
High Performance Computing Meets Experimental
Mathematics∗

David H. Bailey
Lawrence Berkeley National Laboratory, USA

David Broadhurst
Department of Physics, Open University, UK

Yozo Hida
University of California, Berkeley, USA

Xiaoye S. Li
Lawrence Berkeley National Labratory, USA

Brandon Thompson
University of California, Berkeley, USA

May 16, 2003

Abstract
In this paper we describe some novel applications of high performance computing in

a discipline now known as “experimental mathematics.” The paper reviews some recent
published work, and then presents some new results that have not yet appeared in the
literature. A key technique inovlved in this research is the PSLQ integer relation algorithm
(recently named one of ten “algorithms of the century” by Computing in Science and
Engineering). This algorithm permits one to recognize a numeric constant in terms of
the formula that it satisfies. We present a variant of PSLQ that is well-suited for parallel
computation, and give several examples of new mathematical results that we have found
using it. Two of these computations were performed on highly parallel computers, since
they are not feasible on conventional systems. We also describe a new software package
for performing arbitrary precision arithmetic, which is required in this research.

1. Introduction
It is ironic that although modern computing had its roots in mathematics, with the

work of Turing and von Neumann, nonetheless the field of mathematics has been relatively
slow to adopt computing as a serious tool for the practicing researcher, compared with the

∗This research was supported by the Director, Office of Science, Division of Mathematical, Informa-
tion, and Computational Sciences of the U.S. Department of Energy under contract number DE-AC03-
76SF00098. Copyright info: 0-7695-1524-X/02 $17.00 (c) 2002 IEEE

aggressive strides taken in other fields of science and engineering. This situation is finally
starting to change. Powerful, broad-spectrum mathematical software is now available,
notably the Mathematica and Maple products, and a new generation of mathematicians
is aggressively utilizing this software in serious mathematical research.

Almost all mathematical research computing done to date, however, has been per-
formed on single-CPU systems, mostly personal computers, and has been restricted to
relatively passive tasks, such as performing a particular symbolic manipulation prescribed
by the mathematician. Recently however, novel mathematical applications have arisen
that require large, high-performance computer systems. What’s more, in these new appli-
cations the computer is taking an active role in discovering new results in mathematics.

In this manuscript, we will present a brief reprise of recent results in this arena,
together with some new results that have not yet appeared in the literature. A common
theme of our results is integer relation detection using the PSLQ integer relation algorithm.
These computations require advanced numerical techniques, involving very high precision
computation, implemented on high performance computer (HPC) systems. We present
these results, in part, to draw the attention of researchers in the HPC community to this
new and promising application of HPC technology.

Many, but not all, of the mathematical results that we have discovered numerically
have subsequently been proven rigorously. In the following, the

.
= notation is used in

numerically discovered relations for which a formal proof is not yet known.

2. The PSLQ Integer Relation Detection Algorithm and Variants
Let x = (x1, x2, · · · , xn) be a vector of real or complex numbers. x is said to possess

an integer relation if there exist integers ai, not all zero, such that

a1x1 + a2x2 + · · · + anxn = 0

By an integer relation algorithm, we mean a practical computational scheme that can
recover the vector of integers ai, if it exists, or can produce bounds within which no
integer relation exists.

The first general integer relation algorithm was found in 1977 [13]. At the present
time, the most effective algorithm for integer relation detection is the “PSLQ” algorithm
of mathematician-sculptor Helaman Ferguson [12]. PSLQ was recently named one of ten
“algorithms of the century” by the publication Computing in Science and Engineering [3].
In addition to possessing good numerical stability, PSLQ is guaranteed to find a relation
in a polynomially bounded number of iterations.

The basic PSLQ algorithm can be stated as follows [12, 5]: Let x be the n-long input

real vector, and let nint denote the nearest integer function. Select γ ≥
√

4/3 (in our

computations, we use γ =
√

4/3). Then perform the following operations:

Initialize:

1. Set the n × n matrices A and B to the identity.

2. Compute the n-long vector s as sk :=
√∑n

j=k x2
j , and set y to the x vector, normal-

ized by s1.

2

3. Compute the initial n × (n − 1) matrix H as Hij = 0 if i < j, Hjj := sj+1/sj, and
Hij := −yiyj/(sjsj+1) if i > j.

4. Reduce H: For i := 2 to n: for j := i − 1 to 1 step −1: set t := nint(Hij/Hjj); and
yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk; endfor; for k := 1 to n: set
Aik := Aik − tAjk and Bkj := Bkj + tBki; endfor; endfor; endfor.

Iterate until an entry of y is within a reasonable tolerance of zero, or precision has been
exhausted:

1. Select m such that γi|Hii| is maximal when i = m.

2. Exchange the entries of y indexed m and m + 1, the corresponding rows of A and
H, and the corresponding columns of B.

3. Remove the corner on H diagonal: If m ≤ n − 2 then set t0 :=
√

H2
mm + H2

m,m+1,

t1 := Hmm/t0 and t2 := Hm,m+1/t0; for i := m to n: set t3 := Him, t4 := Hi,m+1,
Him := t1t3 + t2t4 and Hi,m+1 := −t2t3 + t1t4; endfor; endif.

4. Reduce H: For i := m + 1 to n: for j := min(i − 1,m + 1) to 1 step −1: set
t := nint(Hij/Hjj) and yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk; endfor;
for k := 1 to n: set Aik := Aik − tAjk and Bkj := Bkj + tBki; endfor; endfor; endfor.

5. Norm bound: Compute M := 1/ maxj |Hjj|. Then there can exist no relation vector
whose Euclidean norm is less than M .

6. Termination test: If the largest entry of A exceeds the numeric precision level, then
precision is exhausted. If the smallest entry of the y vector is less than the detection
threshold (typically set near the precision “epsilon”), a relation has been detected
and is given in the corresponding column of B.

The strategy of PSLQ is to reduce the entries of the H matrix by means of a se-
quence of operations wherein integer multiples of one row are subtracted from another.
The particular choice of the two rows involved in the subtraction, and the technique of
removing the resulting corner above the H matrix diagonal, are the keys to efficient and
numerically stable operation. As one can see from step 5 of the iteration above, the norm
bound increases in inverse proportion to the reciprocal of the largest H matrix diagonal
entry. Thus if the original x vector possesses an integer relation (to within a certain
numerical tolerance), it will be found once the H matrix diagonal entries are sufficiently
small, provided numeric precision has not been exhausted. See [12] for full details.

Some efficient “multi-level” implementations of PSLQ are described in [5]. These new
variants of PSLQ run many times faster than a naive implementation of PSLQ, particu-
larly on large problems. Even with such accelerations, however, run times are painfully
long for many applications. Thus one is led to consider implementations of PSLQ, both
single-level and multi-level, on parallel computer systems. Unfortunately, iteration step 4
above exhibits a recursion that inhibits parallel execution. What’s more, the multi-level
schemes we just described have the perverse effect of removing other possible avenues for
parallel computation.

3

Recently a “multi-pair” variant of PSLQ was discovered that is suitable for parallel
computation [5]. The basic multi-pair PSLQ algorithm can be stated as follows. Here

γ ≥
√

4/3 as before, and β = 0.4.

Initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1 else set
Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
√∑n

j=k x2
j ; endfor; set t = 1/s1; for k := 1 to n: set

yk := txk; sk := tsk; endfor.

3. Initial H: For j := 1 to n − 1: for i := 1 to j − 1: set Hij := 0; endfor; set
Hjj := sj+1/sj; for i := j + 1 to n: set Hij := −yiyj/(sjsj+1); endfor; endfor.

Iteration: Repeat the following steps until precision has been exhausted or a relation has
been detected.

1. Sort the entries of the (n − 1)-long vector {γi|Hii|} in decreasing order, producing
the sort indices.

2. Beginning at the sort index m1 corresponding to the largest γi|Hii|, select pairs of
indices (mi,mi + 1), where mi is the sort index. If at any step either mi or mi + 1
has already been selected, pass to the next index in the list. Continue until either
βn pairs have been selected, or the list is exhausted. Let p denote the number of
pairs actually selected in this manner.

3. For i := 1 to p, exchange the entries of y indexed mi and mi + 1, and the corre-
sponding rows of A, B and H; endfor.

4. Remove corners on H diagonal: For i := 1 to p: if mi ≤ n − 2 then set t0 :=√
H2

mi,mi
+ H2

mi,mi+1, t1 := Hmi,mi
/t0 and t2 := Hmi,mi+1/t0; for i := mi to n: set

t3 := Hi,mi
; t4 := Hi,mi+1; Hi,mi

:= t1t3 + t2t4; and Hi,mi+1 := −t2t3 + t1t4; endfor;
endif; endfor.

5. Reduce H: For i := 2 to n: for j := 1 to n − i + 1: set l := i + j − 1; for
k := j + 1 to l − 1: set Hlj := Hlj − TlkHkj; endfor; set Tlj := nint(Hlj/Hjj) and
Hlj := Hlj − TljHjj; endfor; endfor.

6. Update y: For j := 1 to n − 1: for i := j + 1 to n: set yj := yj + Tijyi; endfor;
endfor.

7. Update A and B: For k := 1 to n: for j := 1 to n − 1: for i := j + 1 to n: set
Aik := Aik − TijAjk and Bjk := Bjk + TijBik; endfor; endfor; endfor.

8. Norm bound: Compute M := 1/ maxj |Hjj|. Then there can exist no relation vector
whose Euclidean norm is less than M .

4

9. Termination test: If the largest entry of A exceeds the numeric precision level, then
precision is exhausted. If the smallest entry of the y vector is less than the detection
threshold (typically set near the precision “epsilon”), a relation has been detected
and is given in the corresponding row of B.

The basic idea of the multi-pair PSLQ algorithm is that each iteration performs, in
effect, up to βn independent row interchanges. Thus the number of iterations that must
be performed in sequential order is reduced by a factor of roughly βn, while the amount of
computation (and the opportunity for parallelism) involved in a single iteration increases
by a factor of roughly βn. In addition, the reduction step (step 5) is performed in a diag-
onal sweep over the H matrix, thus avoiding the recursion that plagues standard PSLQ.
This basic multi-pair PSLQ algorithm can be accelerated by multi-level implementation
schemes (similar to those used to accelerate standard PSLQ), while still maintaining rea-
sonable parallel efficiency.

3. A New Arbitrary Precision Computation Package
It should be emphasized that for almost all applications of PSLQ or any other integer

relation algorithm, high-precision arithmetic (accurate to hundreds or even thousands of
digits) must be used. Only a very small class of relations can be recovered reliably with
the 64-bit IEEE floating-point arithmetic that is available on current computer systems.
This follows from basic information theory considerations, wherein it can be seen that
to recover a relation of length n, with coefficients of maximum size d digits, the input
vector x must be specified to at least nd digits, and floating-point arithmetic accurate
to at least nd digits must be employed in the integer relation detection algorithm. The
PSLQ algorithm is quite efficient in this regard — it is typically successful in recovering
relations when the input data and working precision are set as low as 1.1 × nd digits.

High-precision arithmetic software is available from a number of sources. The com-
mercial products Maple and Mathematica include multiple precision arithmetic facilities,
and some “freeware” packages are available as well.

We take this opportunity to announce and briefly describe “arprec,” a new software
package for performing calculations with arbitrarily high precision. It consists of a revi-
sion and extension of Bailey’s earlier “mpfun” package [2], enhanced with special IEEE
numerical techniques described in an earlier paper by some of present authors [14]. In
particular, this package:

• Is written in C++ for performance and broad portability.

• Includes C++ and F-90 translation modules that permit one to utilize the package
with only minor changes to an existing C++ or F-90 program.

• Includes integer, floating and complex datatypes.

• Permits datatypes of different precision levels to be defined.

• Inter-operates with conventional integer and floating-point datatypes.

• Includes common transcendental functions (sqrt, exp, sin, etc).

5

• Includes quadrature routines (i.e. numerical integration).

• Includes PSLQ integer relation routines.

• Includes special routines for extra-high precision (> 1000 digits).

As noted above, the package is combined with translation modules that permit one to
use the library routines with only minor changes to one’s conventional source code (either
C++ or Fortran-90). For example, the following simple Fortran-90 program

program main
use mpmodule
type (mp_real) a, b
a = 1.d0
b = cos(a)**2 + sin(a)**2 - 1.d0
call mpwrite (6, b)
stop
end program

verifies that cos2(1)+sin2(1)−1 = 0 to 1000 decimal digit accuracy (or any other specified
level of accuracy). The arprec software is available from http://www.nersc.gov/~dhbailey/

mpdist/index.html.

3. Finding Algebraic Relations Using PSLQ
A straightforward application of PSLQ is to determine whether or not a given constant

t, whose value can be computed to high precision, is algebraic of some degree n or less
(i.e., t satisfies an equation of the form 0 = a0 + a1t + a2t

2 + · · · + ant
n for integers ai).

This can be done by first computing the vector T = (1, t, t2, · · · , tn) to high precision and
then applying PSLQ to the resulting (n+1)-long vector. If a relation is found for T , then
this relation vector is precisely the set of integer coefficients of a polynomial satisfied by
t (to within the numerical accuracy being used).

One of the first results of this sort was the identification of the constant B3 =
3.54409035955 · · ·, namely the third bifurcation point of the logistic map xk+1 = rxk(1 −
xk), which exhibits period doubling shortly before the onset of chaos. To be precise, B3

is the smallest value of the parameter r such that successive iterates xk exhibit eight-way
periodicity instead of four-way periodicity. Computations using a predecessor algorithm
to PSLQ found that B3 is a root the polynomial

0 = 4913 + 2108t2 − 604t3 − 977t4 + 8t5 + 44t6 + 392t7 − 193t8 − 40t9

+ 48t10 − 12t11 + t12

Recently, one of the present authors identified B4 = 3.564407268705 · · ·, the fourth
bifurcation point of the logistic map, using PSLQ [5]. Some conjectural reasoning had
suggested that B4 might satisfy a 240-degree polynomial, and that the constant α =
−B4(B4 − 2) might satisfy a 120-degree polynomial. In order to test this hypothesis, we
applied PSLQ to the 121-long vector (1, α, α2, · · · , α120). Indeed, a relation was found,
although 10,000 digit arithmetic and several hours of computation on a large Compaq
computer system were required. The recovered integer coefficients descend monotonically

6

from 25730, which is approximately 1.986×1072, to one. Such regularity strongly suggests
that the recovered relation is real, and not just an artifact of numerical computation.

4. A New Formula for Pi
For centuries mathematicians have assumed that there is no shortcut to computing

just the n-th digit of π. Thus, it came as no small surprise when such an algorithm was
recently discovered [4]. In particular, this simple scheme allows one to compute the n-th
binary (or hexadecimal) digit of π, plus a few additional digits beginning at that position,
without computing any of the first n−1 digits. This can be done using a simple algorithm
that requires only minimal memory. This scheme is based on the following new formula,
which was discovered in 1996 using PSLQ:

π =
∞∑

k=0

1

16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]

Since then, hundreds of additional results of this type have been found, including formulas
for certain constants that arise in quantum field theory. All of these discoveries have been
made, or at least suggested, by PSLQ computations. Just one example of many new
results that could be cited is the following formula:

tan−1
(

4

5

)
=

1

217

∞∑
k=0

1

220k

(
524288

40k + 2
− 393216

40k + 4
− 491520

40k + 5
+

163840

40k + 8
+

32768

40k + 10

− 24576

40k + 12
+

5120

40k + 15
+

10240

40k + 16
+

2048

40k + 18
+

1024

40k + 20
+

640

40k + 24

+
480

40k + 25
+

128

40k + 26
− 96

40k + 28
+

40

40k + 32
+

8

40k + 34
− 5

40k + 35

− 6

40k + 36

)

An updated compendium of these results is available in [1].

5. Implications for Normality
Until recently, the results of the previous section were regarded by some to be in

the arena of “recreational mathematics” — amusing, but of no further consequence in
mathematics or any other scientific discipline. To the contrary, it now appears that
the existence of these formulas has deep implications for the centuries-old question of
whether (and why) constants such as π and log 2 are “normal” [7]. Here “normal” to a
given base b means that all m-long base-b digit strings occur with a limiting frequency
that is precisely what one would expect from random digits, namely b−m. It is a true,
if counter-intuitive consequence of measure theory that “almost all” real numbers are
normal to a given number base b, and in fact to all bases b simultaneously. What’s more,
it appears from computational studies that all of the naturally occurring constants of
mathematics, including π, e,

√
2, log 2,

√
π, are normal. One can even conjecture that

every irrational algebraic number is normal, as there are no known or apparent counter-
examples. Nonetheless it is an embarrassing fact of modern mathematics that not a
single one of the above-mentioned constants has ever been proven to be normal to any
base. Indeed, until recently normality proofs had only been obtained for a handful of
artificially contrived constants.

7

Recently progress was achieved on this front. In particular, it has now been proven
that the normality of a certain class of mathematical constants, including π and log 2,
reduces to a plausible conjecture from the field of chaotic sequences. These new results are
direct consequences of the recent computer-based discoveries mentioned in the previous
section. A highly readable account of these developments is given in a recent Science
News article [15].

In the latest development along this line, these same methods have now led to a
rigorous proof that a certain infinite class of reals is normal. The simplest instance of this
class is the constant

α2,3 =
∞∑

k=1

1

3k23k

= 0.04188368083150298507 . . .10

= 0.0AB8E38F684BDA12F684 . . .16 ,

In this instance, it has been proven that α2,3 is normal base 2 (or, equivalently, base 16)
— each m-long binary (or hexadecimal) digit string appears with a limiting frequency
that is precisely 2−m (or 16−m in the case of hexadecimal digits). The normality of this
particular constant was actually demonstrated in a little-known paper by Stoneham in
1973. However the recent results extend to a much larger class of similar constants. Full
details of these latest results are given in the technical report [8].

6. Identification of Combinatorial Sum Constants
In another recent application of high performance computing to mathematical number

theory, PSLQ has been used to investigate sums of the form

S(k) :=
∑
n>0

1

nk
(

2n
n

)
For small k, these constants are known to satisfy simple mathematical identities, such
as S(4) = 17π4/3240. For many years researchers have sought generalizations of these
formulas for k > 4. Recently some more general formulas were found using PSLQ. In
particular, the constants {S(k)|k = 5 . . . 20} have now been evaluated in terms of multiple
zeta values [9], which are defined by

ζ(s1, s2, · · · , sr)

=
∑

k1>k2>···>kr>0

1

ks1
1 ks2

2 · · · ksr
r

and multiple Clausen values [10] of the form

M(a, b) =
∑

n1>n2>...>nb>0

sin(n1π/3)

na
1

b∏
j=1

1

nj

A sample result, obtained using PSLQ, is the following:

S(9)
.
= π

[
2M(7, 1) +

8

3
M(5, 3) +

8

9
ζ(2)M(5, 1)

]
− 13921

216
ζ(9)

+
6211

486
ζ(7)ζ(2) +

8101

648
ζ(6)ζ(3) +

331

18
ζ(5)ζ(4) − 8

9
ζ3(3)

8

Recently S(20) was evaluated with this methodology, which involved an integer relation
problem of size n = 118. This solution required 5,000 digit arithmetic and several hours
of computation on a high-end workstation. The solution is given explicitly in [5].

7. Identification of Euler-Zeta Sum Constants
One may define Euler-Zeta sums by [9]

ζ

(
s1, s2 · · · sr

σ1, σ2 · · · σr

)
=

∑
k1>k2>···>kr>0

σk1
1

ks1
1

σk2
2

ks2
2

· · · σkr
r

ksr
r

where σj = ±1 are signs and sj > 0 are integers. When all the signs are positive, one
has a multiple zeta value. Constants with alternating signs appear in problems such as
computation of the magnetic moment of the electron.

One of the present authors had conjectured that the dimension of the space of Euler
sums with weight w :=

∑
j sj is the Fibonacci number defined by Fw+1 = Fw +Fw−1, with

F1 = F2 = 1. The first few Fibonacci numbers are 1, 2, 3, 5, 8, 13, 21, In an attempt to
establish this conjecture, PSLQ was used to obtain complete reductions of all Euler sums
to a basis of size Fw+1 at weights w ≤ 9. At weights w = 10 and w = 11 the conjecture
has been tested by application of PSLQ in more than 600 cases. At weight w = 11 these
tests involve solving integer relations of size n = F12 + 1 = 145. These solutions required
5,000 digit arithmetic and many hours of processing on an IBM SP parallel computer
system. In this instance the parallel processing was fairly straightforward, but the total
cost of the computation (approximately 2,000 CPU-hours) is beyond the reach of what is
reasonable to do on any single-processor system [5].

8. A Relation for a Root of Lehmer’s Polynomial
The findings reported in this section, which are computationally the most demanding

that we have attempted, arose from the numerical discovery (using PSLQ) by the one of
the present authors that

α630 − 1 = (α315 − 1)(α210 − 1)(α126 − 1)2(α90 − 1)(α3 − 1)3(α2 − 1)5(α − 1)3/

[(α35 − 1)(α15 − 1)2(α14 − 1)2(α5 − 1)6α68]

where α = 1.176280818259917 . . . is the larger real root of Lehmer’s polynomial

0 = α10 + α9 − α7 − α6 − α5 − α4 − α3 + α + 1

Once discovered numerically, the relation above was rigorously proven by repeated sub-
stitution for α10. The relation led this same author to believe that a valid ladder of
polylogarithms exists at order n = 17, contrary to a suggestion in [16]. Indeed, we were
able to find 125 non-zero integers a, bj, ck, up to 292 digits in size, such that the relation

a ζ(17)
.
=

8∑
j=0

bj π2j(log α)17−2j +
∑

k∈D(S)

ck Li17(α
−k)

holds to more than 50,000 decimal digits. Here the 115 indices k in Lin(α−k
1) :=

∑
r>0 α−kr

1 /rn

are drawn from the set, D(S), of positive integers that divide at least one element of the

9

set {29, 47, 50, 52, 56, 57, 64, 74, 75, 76, 78, 84, 86, 92, 96, 98, 108, 110, 118, 124, 130, 132, 138,
144, 154, 160, 165, 175, 182, 186, 195, 204, 212, 240, 246, 270, 286, 360, 630}. The resulting
set of integers can be obtained from [11].

This set of 125 integers was found in more than more way. One of these computations
was performed on the NERSC Cray T3E, a highly parallel system at Lawrence Berkeley
Laboratory. In this calculation one of the present authors employed a three-level ver-
sion of the “multi-pair” PSLQ algorithm described in Section 2, implemented using MPI
and Fortran-90. This computation required 50,000 decimal digit arithmetic, and approxi-
mately 44 hours on 32 CPUs of the T3E, completing after 236,713 iterations. Full details
are given in the technical report [6].

In order to test the new arprec arbitrary precision computation package, we recently
(July 2002) repeated this run, this time using the “seaborg” system at NERSC. This is a
large IBM SP computer system, containing 184 nodes, each with 16 Power3 CPUs, for a
total of nearly 2,944 CPUs. For this computation, 64 CPUs (four nodes) were used. The
computation completed in 236,555 iterations (slightly different than before, due to minor
numerical differences), requiring 16.6 hours. 50,000 digit arithmetic (using the arprec
software) was used here, as in the previous computation.

In the latest run, the minimum and maximum y entries at the point of relation detec-
tion were approximately 1.6326 × 10−49772 and 1.3489 × 10−36401, respectively. The ratio
of these two values, which can be thought of as a “confidence ratio” of the results, is ap-
proximately 8.2623×10−13372. This very small value means that it is exceedingly unlikely
that these results are merely a spurious artifact of numerical round-off error (although as
before such computations cannot be taken as rigorous proof of these relations).

Because of both the large memory requirement and the CPU time requirement, this
calculation is not feasible on any conventional single-processor computer system. We
believe this to be the largest single integer relation problem ever solved.

9. Conclusion
For many years, mathematical researchers have dreamed of a facility that permits one

to recognize a constant, whose numerical value can be computed, in terms of the math-
ematical formula that it satisfies. With the advent of efficient integer relation detection
algorithms such as PSLQ and its variants, implemented on high performance computer
systems, that time has arrived. Using these algorithms, numerous new facts of mathemat-
ics and physics have been discovered, and these discoveries have in turn led to valuable
new insights. This is an excellent example of “experimental mathematics,” namely the
utilization of modern computer technology in the discovery of new mathematical prin-
ciples. Because of the expected continuation in exponential improvement in computer
performance, due to Moore’s Law, together with a significantly greater familiarity with
these tools on the part of the younger generation of mathematicians, experimental ap-
proaches are expected to play a much wider role in both pure and applied mathematics
during the next century. We believe that increased dialogue between the mathematical
community and the high performance computing community will help realize this dream.

10

References

[1] David H. Bailey, “A Compendium of BBP-Type Formulas for Mathematical
Constants,” manuscript Nov. 2000.

[2] David H. Bailey, “A Fortran-90 Based Multiprecision System”, ACM Transactions
on Mathematical Software, vol. 21, no. 4, 1995, pg. 379–387.

[3] David H. Bailey, “Integer Relation Detection,” Computing in Science and
Engineering, vol. 2, no. 1 (Jan-Feb. 2000), pg. 14–20.

[4] David H. Bailey, Peter B. Borwein and Simon Plouffe, “On The Rapid
Computation of Various Polylogarithmic Constants”, Mathematics of Computation,
vol. 66, no. 218, 1997, pg. 903–913.

[5] David H. Bailey and David Broadhurst, “Parallel Integer Relation Detection:
Techniques and Applications,” to appear in Mathematics of Computation.

[6] David H. Bailey and David J. Broadhurst, “A Seventeenth-Order Polylogarithm
Ladder,” manuscript, 2001.

[7] David H. Bailey and Richard E. Crandall, “On the Random Character of
Fundamental Constant Expansions,” Experimental Mathematics, vol. 10, no. 2
(June 2001), pg. 175-190.

[8] David H. Bailey and Richard E. Crandall, “Random Generators and Normal
Numbers,” manuscript, Mar. 2002.

[9] Jonathan M. Borwein, David M. Bradley and David J. Broadhurst, “Evaluations of
k-fold Euler/Zagier Sums: A Compendium of Results for Arbitrary k,” Electronic
Journal of Combinatorics, vol. 4, no. 2, 1997, #R5.

[10] Jonathan M. Borwein, David J. Broadhurst and Joel Kamnitzer, “Central Binomial
Sums and Multiple Clausen Values (with Connections to Zeta Values),” available
from http://www.cecm.sfu.ca/preprints.

[11] David H. Broadhurst, ftp://physics.open.ac.uk/pub/physics/
dbroadhu/lehmer/integers.txt

[12] Helaman R. P. Ferguson, David H. Bailey and Stephen Arno, “Analysis of PSLQ,
An Integer Relation Finding Algorithm,” Mathematics of Computation, vol. 68,
1999, pg. 351–369.

[13] Helaman R. P. Ferguson and Rodney W. Forcade, “Generalization of the Euclidean
Algorithm for Real Numbers to All Dimensions Higher Than Two,” Bulletin of the
American Mathematical Society, vol. 1, 1979, pp. 912–914.

[14] Yozo Hida, Xiaoye S. Li and David H. Bailey, “Algorithms for Quad-Double
Precision Floating Point Arithmetic,” Proceedings of ARITH-15, IEEE Computer
Society, 2001.

11

[15] Ivars Peterson, “Pi al a Mode,” Science News, vol. 160, no. 9 (Sept. 1, 2001), pg.
136–137.

[16] Don Zagier, “Special Values and Functional Equations of Polylogarithms”,
Appendix A in Leonard Lewin, editor, Structural Properties of Polylogarithms,
Mathematical Surveys and Monographs, vol. 37, American Mathematical Society,
Providence, RI, 1991.

12

